Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum.
نویسندگان
چکیده
Dopamine is a critical modulator of striatal function; its absence produces Parkinson's disease. Most cellular actions of dopamine are still unknown. This work describes the presynaptic actions of dopaminergic receptor agonists on GABAergic transmission between neostriatal projection neurons. Axon collaterals interconnect projection neurons, the main axons of which project to other basal ganglia nuclei. Most if not all of these projecting axons pass through the globus pallidus. Thus, we lesioned the intrinsic neurons of the globus pallidus and stimulated neostriatal efferent axons antidromically with a bipolar electrode located in this nucleus. This maneuver revealed a bicuculline-sensitive synaptic current while recording in spiny cells. D1 receptor agonists facilitated whereas D2 receptor agonists depressed this synaptic current. In contrast, a bicuculline-sensitive synaptic current evoked by field stimulation inside the neostriatum was not consistently modulated, in agreement with previous studies. The data are discussed in light of the most recent experimental and modeling results. The conclusion was that inhibition of spiny cells by axon collaterals of other spiny cells is quantitatively important; however, to be functionally important, this inhibition might be conditioned to the synchronized firing of spiny neurons. Finally, dopamine exerts a potentially important role regulating the extent of lateral inhibition.
منابع مشابه
Microcircuits in the Striatum Striatal Cell Types and Their Interaction
The neostriatum is strategically located in the forebrain and receives inputs from all cortical areas. The complexity of the corticostriatal pathways suggest that striatal neurons are in a unique position to process convergent inputs from cortex and through basal ganglia output nuclei control subcortical nuclei and/or contribute to cortical dynamics via the thalamus. The most abundant neuron in...
متن کاملStriatal Cell Types and Their Interaction
The neostriatum is strategically located in the forebrain and receives inputs from all cortical areas. The complexity of the corticostriatal pathways suggests that striatal neurons are in a unique position to process convergent inputs from cortex and through basal ganglia output nuclei to control subcortical nuclei and/or contribute to cortical dynamics via the thalamus. The most abundant neuro...
متن کاملMonosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure.
Following the injection of horseradish peroxidase into the ipsilateral substantia nigra, 36 retrogradely labelled neurons in the striatum were characterized (in three rats) by Golgi staining and gold toning: each neuron was of the medium-size, densely spinous type. Prior to the injection of horseradish peroxidase, two of the rats had had lesions placed in the ipsilateral motor cortex, the third...
متن کاملInhibitory interactions between spiny projection neurons in the rat striatum.
The spiny projection neurons are by far the most numerous type of striatal neuron. In addition to being the principal projection neurons of the striatum, the spiny projection neurons also have an extensive network of local axon collaterals by which they make synaptic connections with other striatal projection neurons. However, up to now there has been no direct physiological evidence for functi...
متن کاملComparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum.
Most neurons in the neostriatum are GABAergic spiny projection neurons with extensive local axon collaterals innervating principally other spiny projection neurons. The other source of GABAergic inputs to spiny neurons derives from a small number of interneurons, of which the best characterized are the parvalbumin-containing, fast-spiking interneurons. Spiny neuron collateral inhibition was not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 26 شماره
صفحات -
تاریخ انتشار 2003